
Assessing the Skill of Updated Precipitation-Type Diagnostics for the Rapid
Refresh with mPING

TOMER BURG
a

National Weather Center Research Experiences for Undergraduates Program, Norman, Oklahoma, and University at

Albany, State University of New York, Albany, New York

KIMBERLY L. ELMORE AND HEATHER M. GRAMS

Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and National Oceanic and

Atmospheric Administration/National Severe Storms Laboratory, Norman, Oklahoma

(Manuscript received 29 July 2016, in final form 20 December 2016)

ABSTRACT

Previous work has shown that the Rapid Refresh (RAP) model severely underrepresents ice pellets in its

grid, with a skill near zero and a very low bias. An ice pellet diagnostic upgrade was devised at the Earth

SystemResearch Laboratory (ESRL) to resolve this issue. Parallel runs of the experimental ESRL-RAPwith

the fix and the operational NCEP-RAP without the fix provide an opportunity to assess whether this upgrade

has improved the overall performance and the performance of the individual precipitation types of the ESRL-

RAP. Verification was conducted using the mobile Phenomena Identification Near the Ground (mPING)

project. The overall Gerrity skill score (GSS) for the ESRL-RAP was improved relative to the NCEP-RAP

at a 3-h lead time but degradedwith increasing lead time; the difference is significant at p, 0.05.Whether this

difference is practically significant for users is unknown. Some improvement was found in the bias and skill

scores of ice pellets and snow in the ESRL-RAP, although the model continues to underrepresent ice pellets,

while rain and freezing rain were generally the same or slightly worse with the fix. The ESRL-RAP was also

found to depict a more realistic spatial distribution of precipitation types in transition zones involving ice

pellets and freezing rain.

1. Introduction

Forecasting winter precipitation type (ptype) is

often a significant challenge for forecasters. Consid-

ering the significant societal impacts that winter pre-

cipitation can inflict, correctly forecasting the type is

crucial. As an aid, forecasters often refer to numerical

weather prediction (NWP) models for guidance

about the spatial distribution of different ptypes.

Unfortunately, modeled precipitation types remain

imperfect.

Previous studies examine modeled precipitation-type

verification against surface observations. For example,

Ikeda et al. (2013) verify the skill of the High Resolution

Rapid Refresh model (HRRR) for predicting ptype

using the Automated Surface Observing System

(ASOS) network as surface observations, concluding

that the forecast mixed-ptype transition zone has poorer

performance scores than the rain and snow ptypes.

Ikeda et al.’s (2013) results are inherently limited by

usage of the ASOS network, which is spatially sparse.

Additionally, of the 852 ASOS stations throughout the

United States, only 15% are able to report ice pellets

(PLs) only when attended, further limiting the extent of

the observation dataset (Elmore et al. 2015).

More recent studies on ptype verification have in-

corporated observations from the mobile Phenomena

Identification Near the Ground project (mPING;

Elmore et al. 2014). The mPING mobile application is

used to crowdsource ptype observations from the public,

where users can select among various ptypes including
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the following: none, hail, drizzle, freezing drizzle, rain,

freezing rain, ice pellets, snow, rain and snow, rain and

ice pellets, and ice pellets and snow. Since its launch on

19 December 2012, over 1 150 000 individual reports

have been submitted to mPING as of October 2016. As

observations can be submitted from any location at any

time, mPING provides a network of spatially and tem-

porally dense ptype observations. This is particularly

useful in cases of highly localized variability in ptype.

Elmore et al. (2015) utilized mPING observations

in 2013 to verify forecast precipitation types for the

North American Mesoscale Forecast System (NAM;

Janjić et al. 2005), the Global Forecast System (GFS;

Moorthi et al. 2001), and the Rapid Refresh (RAP;

Brown et al. 2011) models. The study similarly shows

that the forecast skill for PL and freezing rain

(FZRA) is substantially lower than for rain (RA)

and snow (SN). In particular, the RAP model se-

verely underrepresents PL. As a result, at that time

the RAP had almost zero skill and a bias of nearly

zero; thus, the RAP performed poorly for ice pellets

compared to the other models analyzed in Elmore

et al. (2015).

In response, the Earth System Research Laboratory

(ESRL) implemented a PL diagnostic change that shif-

ted the integrated rainwater requirement from 0.05 to

0.005 g kg21 (Benjamin et al. 2016; NOAA/ESRL 2015).

At the time of this writing, two versions of the updated

RAP are currently active: the experimental RAP, or the

ESRL-RAP, running at ESRL, and the operational

RAP, or the NCEP-RAP, running at the National

Centers for Environmental Prediction (NCEP).

Following is information on the changes that affected

the ESRL and NCEP versions of RAP (C. Alexander

2016, personal communication):

1) NCEP RAPv2 on 25 February 2014

IP diagnosis—if the graupel fall rate at the surface is at

least 1.0 3 1026mms21, the surface temperature

is ,08C, the maximum rain mixing ratio in the column

is.0.05gkg21, and the graupel fall rate at the surface is

greater than that for snow, then ice pellets are diagnosed.

If in addition, the fall rate for graupel is greater than that

for rain, ice pellets only are diagnosed, not freezing rain,

not rain, and not snow. This diagnostic resulted in too

little IP being diagnosed much of the time.

2) ESRL RAPv3 on 12 March 2014

IP diagnosis—if the graupel fall rate at the surface is

at least 1.0 3 1026mms21, the surface temperature

is,08C, themaximum rainmixing ratio in the column

is .0.005gkg21 (modified 12 March 2014), and the

graupel fall rate at the surface is greater than that for

snow, then ice pellets are diagnosed. If, in addition,

the fall rate for graupel is greater than that for rain, ice

pellets only are diagnosed, not freezing rain, not rain,

and not snow. This change resulted in much more IP

being diagnosed.

3) ESRL RAPv3 on 1 January 2015

Switch to WRF version 3.6 with Thompson micro-

physics for aerosols.

4) ESRL RAPv3 during August 2015

FZRA diagnosis—removed check on Tmax in the

column being below freezing and began using 2-m

temperature instead. RA diagnosis—SN switched to

RA when 2-m T . 276.15K.

5) NCEP RAPv3 on 23 August 2016 included all ESRL

RAPv3 changes

This lag between the implementation of the PL-

diagnostic changes between the ESRL and NCEP

versions of the RAP extends for over a year, encom-

passing the entire cold season of 2014/15 and so

provides a unique opportunity to assess parallel ver-

sions of the RAP with and without the enhanced

fix. This work seeks to determine whether the initial

PL-diagnostic enhancement has improved the

precipitation-type forecast skill of the NCEP-RAP

since the initial work by Elmore et al. (2015) and any

differences in the further refined ESRL-RAP over the

NCEP-RAP by verifying both models against mPING

observations.

2. Analysis

a. Data

The NCEP-RAP model output was obtained from

the National Oceanic and Atmospheric Administra-

tion (NOAA) National Operational Model Archive

and Distribution System (NOMADS; Rutledge et al.

2006), while the ESRL-RAP model output was ob-

tained from the ESRL archive. The mPING obser-

vations used as ground truth come from cold season

cases during 2014–2015. These observations are

compared to the ptype generated from the RAP

model at the grid point nearest the mPING

observation.

Precipitation-type diagnosis in NWP models occurs

during the postprocessing stage, utilizing raw model

fields to assign ptype classes. Both versions of the RAP

use a microphysics parameterization scheme based on

Thompson et al. (2008). During the postprocessing

stage, hydrometeor mixing ratios and fall rates for each

precipitation type are assessed, along with surface

temperatures, to generate a categorical yes or no value

for each of the four primary or canonical precipitation

types: rain, snow, ice pellets, and freezing rain. This
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procedure is discussed in further detail in Ikeda et al.

(2013) and NOAA/ESRL (2015).

As precipitation types are diagnosed indepen-

dently, it is possible for the RAP to assign multiple

precipitation types at the same location. Some of

these overlaps do not match the mPING categories,

such as mixed freezing rain and ice pellets; these

choices are possible under the RAP’s algorithm but

are not options provided in mPING. To maintain

consistency between the two sources, all instances of

multiple precipitation types are collapsed into the

four canonical types, following the approach used in

Elmore et al. (2015), and a ranking is assigned in or-

der from highest to lowest impact: FZRA, PL, SN,

and RA.

b. Methods

Six cases were selected from the 2014/15 cold season

for model analysis (Table 1). All observations within

630min of the nearest forecast hour are centered to that

hour, and each mPING observation for that centered

hour is compared against the precipitation type assigned

to the nearest RAP grid point valid at the same hour.

This procedure is performed separately for NCEP-RAP

and ESRL-RAP at 3-, 6-, 9-, 12-, 15-, and 18-h forecast

lead times for each case as well as a composite of all

cases. Only locations for which precipitation is forecast

by both versions of RAP and observed through mPING

are considered for this study.

The resulting comparisons are analyzed using three

different statistics: the Gerrity skill score (GSS;

Gerrity 1992), the Peirce skill score (PSS; Peirce

1884), and bias. The GSS determines the skill for all

four ordered precipitation types simultaneously. Like

PSS, GSS is an equitable score, meaning that among

other factors, constant and random forecasts yield a

score of zero (Gandin and Murphy 1992). Addition-

ally, the GSS penalizes misdiagnosis of common

precipitation types, such as rain, more so than mis-

diagnosis of rare precipitation types, such as freezing

rain. The GSS ranges from 21 to 1, where 21 is an

antiperfect forecast, 0 is the sample climatology or

constant forecast (e.g., no skill), and 1 is a perfect

forecast.

The PSS and bias are applied individually to each

precipitation type for each version of the RAP. The

PSS is also an equitable score and ranges from21 to 1

and is used to assess the skill of each individual pre-

cipitation type relative to sample climatology. The

bias is the ratio of the number of forecasts of a pre-

cipitation type divided by the number of observations

of the same precipitation type. A bias of 1 is an un-

biased forecast, a bias less than 1 is an underforecast,

and a bias above 1 is an overforecast of the ptype;

however, a bias of 1 does not necessarily imply that the

forecast was correct, only that the ptype is forecasted

as often as it is observed.

A 95% confidence interval based on bootstrap resam-

pling is provided for each statistic. Matched-pair per-

mutation tests are used to determine how likely it is that

TABLE 1. Beginning and end time and date of each case, the total number of locations where both versions of RAP depict precipitation

and an mPING observation existed for each case at 3-h lead time, the percentage of each case within the total composite, and the primary

region(s) of impact for each event.

Case start time Case end time

No. of 3-h lead-time

mPING reports Total cases (%) Primary region(s) of impact

0900 UTC 26 Nov 2014 0300 UTC 27 Nov 2014 2976 12.6 Northeast United States

2300 UTC 1 Feb 2015 2200 UTC 2 Feb 2015 2331 9.9 Northern United States

2100 UTC 15 Feb 2015 0600 UTC 17 Feb 2015 4637 19.6 Southern United States

1200 UTC 20 Feb 2015 0000 UTC 22 Feb 2015 3015 12.8 Central, eastern United States

0600 UTC 23 Feb 2015 0000 UTC 24 Feb 2015 1347 5.7 Southern United States

1200 UTC 3 Mar 2015 2100 UTC 5 Mar 2015 9335 39.5 Central, eastern United States

FIG. 1. GSS for the full case composite analyzed at 3-h forecast

lead time intervals for the ESRL-RAP (blue) and the NCEP-RAP

(red) models. Solid lines represent the mean GSS, while the en-

compassing dashed lines represent the 95% confidence interval

based on bootstrap resampling.

APRIL 2017 BURG ET AL . 727

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/24/21 12:22 PM UTC



FIG. 2. For all cases, the composite of (a) bias and (b) PSS for rain. (c),(d)As in (a),(b), but for snow. (e),(f)

As in (a),(b), but for ice pellets. (g),(h) As in (a),(b), but for freezing rain. The bias and PSS were

calculated for the ESRL-RAP (blue) and the NCEP-RAP (red) models. Solid lines represent the mean

value, while the encompassing dashed lines represent the 95% confidence interval based on bootstrap

resampling.
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the difference between the means of each statistic for the

ESRL-RAP and the NCEP-RAP arises by chance.

3. Results

All data presented here and used in this analysis ap-

pear in the online supplemental material.

a. Composite of all cases

The GSS, PSS, and bias are computed in 3-h intervals

from 3- to 18-h forecast lead times for the composite of

all cases. Figure 1 depicts the mean GSS and 95%

bootstrap confidence interval for both versions of the

RAP. The ESRL-RAP performs relatively well with a

mean GSS of 0.525 for a 3-h forecast, whereas the

NCEP-RAP has ameanGSS of 0.481. Permutation tests

yield a p value, 0.002, indicating that the improved skill

of the ESRL-RAP is statistically distinct from that of

NCEP-RAP. TheGSS of the ESRL-RAP degrades with

increasing lead time, however, and by 6-h lead time the

meanGSS of the ESRL-RAP is 0.461, compared against

the mean GSS of the NCEP-RAP at 0.482 (p , 0.002).

The same trend continues through the remainder of the

18-h forecast range, with the mean GSS gradually de-

creasing with increasing lead time with the permutation

test p , 0.01.

The composite sample is broken down into the four

primary precipitation types to help determine how the

performance of any particular ptype is mirrored within

the other ptypes. Figures 2a–h depict the bias and PSS for

each precipitation type. Both versions of the RAP over-

forecast RA (i.e., bias . 1), while the ESRL-RAP has a

persistently higher mean bias than the NCEP-RAP for

RA. The ESRL-RAP shows a bias very near 1 for SN,

while the ESRL-RAP shows a substantially lower bias

than the NCEP-RAP for FZRA, but with a continued

tendency to overforecast FZRA. For PL, the category for

which the earlier version performed worst, the NCEP-

RAP still has a very low bias between 0.12 and 0.15 de-

pending on lead time; however, this is much improved

over the version evaluated in Elmore et al. (2015). Thus,

the NCEP-RAP still underforecasts ice pellets compared

with either the NAM or GFS (Elmore et al. 2015). The

ESRL-RAP does better, with PL showing an under-

forecast bias between 0.28 and 0.38 depending on lead

time. Themean bias differences between theESRL-RAP

and NCEP-RAP have p values less than 0.01 for RA, SN,

PL, and FZRA, except for FZRAat the 3-h lead time, for

which 0.01 , p , 0.05.

An analysis of the PSS for the individual precipitation

types showsminor differences for rain, with a higher PSS

for the ESRL-RAP at 3-h lead time and lower PSS at

18-h lead time, while the PSS for freezing rain is typically

lower for the ESRL-RAP than the NCEP-RAP. PSS for

the ESRL-RAP is higher than for the NCEP-RAP for

snow and ice pellets, where p , 0.01.

The composite of all cases reflects an improvement in

ice pellet diagnosis, although typical variability in the

evolution of winter storms on a daily basis results in

different outcomes for each case. To further highlight

the extent of these day-to-day variabilities, two cases are

analyzed in more detail below.

b. 26–27 November 2014

The 26–27 November 2014 case was dominated by a

coastal low pressure system along the East Coast that

produced an early season snowstorm across the mid-

Atlantic and into the New England regions. This case

displays the lowest skill scores out of any case analyzed

in this study. The NCEP-RAP depicts very little mixed

FIG. 3. (a) NCEP-RAP and (b) ESRL-RAP forecast ptypes with a 3-h lead time, valid at 1900 UTC 26 Nov 2014.

Modeled ptypes are shown by filled contours, and mPING observations are represented by circles.
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precipitation while mPING observations suggest oth-

erwise. For the 3-h lead time, there are 448 spatially

distributed ice pellet and 33 spatially distributed freez-

ing rain mPING observations, while the NCEP-RAP

has only 1 ice pellet and 2 freezing rain forecasts across

all mPING observations.

The NCEP-RAP depicts only RA or SN (Fig. 3), de-

spite the presence of numerous ice pellet and freezing

rain mPING reports fromWashington, D.C., to Boston,

MA, which explains its low scores relative to the other

cases. The skill of the ESRL-RAP is improved with its

depiction of a narrow axis of ice pellets from Maryland

into coastal New England along with the depiction of

rain over southern New Jersey and Long Island, which

indicates a closer match to mPING observations than

the NCEP-RAP.

The mean GSS for the ESRL-RAP (Fig. 4) generally

alternates between 0.15 and 0.18, which is a small but

substantial ( p , 0.01) improvement over the NCEP-

RAP. The mean GSS for the NCEP-RAP alternates

between 0.10 and 0.16. Even so, this differencemay be of

little practical utility.

c. 3–5 March 2015

The synoptic setup for the 3–5 March 2015 case con-

sisted of two rounds: a widespread snow and ice pellet

event in the northeast United States on 3 March 2015,

followed by a slow southward progression of a strong

baroclinic zone extending from the southern plains into the

mid-Atlantic region that produced a well-defined transi-

tion zone between rain, freezing rain, ice pellets, and snow.

This case is unusual as the GSS for the ESRL-RAP was

typically lower than that of the NCEP-RAP ( p , 0.05).

Another key difference between the two versions of

the RAP is the depiction of the ptype transition zones

(Fig. 5). When the model output is collapsed to the four

canonical precipitation types, the NCEP-RAP depicts an

unrealistic transition zone from rain to snow at the 3-h

lead time, particularly over Tennessee where the ptype

from south to north changes from rain to snow, then to ice

pellets, then to freezing rain, then back to ice pellets, and

finally to snow. One of the most noticeable changes with

the ESRL-RAP is a much more realistic spatial distri-

bution of precipitation types in the transition zone, with a

south–north transition from rain to freezing rain to ice

pellets to snow. Other cases analyzed in this study display

the same characteristic. More ice pellets are being de-

picted within the ESRL-RAP than in the NCEP-RAP,

although a bias toward overforecasting rain is apparent in

the ESRL-RAP. This is particularly noticeable over

western Tennessee and Arkansas, where mPING obser-

vations show sleet while the model depicts rain.

The mean GSS for the ESRL-RAP (Fig. 6) degrades

from 0.497 at the 3-h forecast to 0.295 by the 18-h

forecast. For the NCEP-RAP, the mean GSS peaks at

0.515 at the 6-h forecast before gradually decreasing to

0.375 by the 18-h forecast, indicating a persistent signal

FIG. 5. As in Fig. 3, but valid at 2300 UTC 4 Mar 2015.

FIG. 4. As in Fig. 1, but for the 26–27 Nov 2014 event.
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that the NCEP-RAP performs better than the ESRL-

RAP ( p , 0.01), except for the 3-h lead time, where

p . 0.05.

4. Discussion

The ESRL-RAP clearly shows an incremental im-

provement in forecasting PL and SN. Forecasts for

FZRA and RA show either no improvement or slightly

degraded skill within the ESRL-RAP. There was still

case-to-case variability, although the individual cases

analyzed all show improvement for PL.

Other differences between the two models may be at

play, since Figs. 3 and 5 show subtle differences in the

spatial extent of the precipitation between both versions

of the RAP. Currently, the source(s) of these differences

is not known, although indications are that other

changes exist between both versions of the RAP, which

prevents isolating the ice pellet diagnostic from other

changes. Only six cases are analyzed in this study; thus, a

complete picture of the day-to-day variability typical of

precipitation events may not be captured. Finally, while

most of the differences in skill scores and bias between

both versions of the RAP display small p, typically p ,
0.01, these differences probably have little practical

significance because it is unlikely an observer would

perceive these differences in forecast skill, though a

more skillful forecast may result in some economic

benefit if assessed over a long enough period. This is

particularly true when the differences are very small, as

is the case with the PSS for freezing rain.

5. Concluding thoughts

Both the NCEP- and ESRL-RAP models include a

major ice pellet correction. Parallel runs of theESRL-RAP,

which incorporates an ice pellet diagnosis refinement,

and the NCEP-RAP, which does not, are verified with

mPING observations to assess whether the refinement

has improved the performance of the RAP model

precipitation-type diagnosis. GSS values are computed

for individual cases and the composite of all cases,

along with PSS and bias for each individual pre-

cipitation type. Bootstrap confidence intervals are

computed, and the statistical nature of any differences

are derived from permutation tests. Results suggest

that the ESRL-RAP enjoys incremental and significant

improvement ( p, 0.01) in the skill and bias for PL and

SN, but either no change or decreased performance for

FZRA and RA. Even with the improvements in the ice

pellet diagnosis, the same bias toward underforecasting

PL continues, albeit to a lesser extent. A visual analysis

of the ESRL-RAP also reveals a more reasonable

spatial distribution of ptypes in transition zones in-

volving PL and FZRA.Various issues, such as the small

sample size and inherent day-to-day variability, pre-

clude higher confidence on the exact nature of the

improvement in the ESRL-RAP.
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